
SSH: key of success
Protocol & Applications

Philippe.Weill@latmos.ipsl.frSebastien.Gardoll@ipsl.frPhilippe.Dos-Santos@ipsl.fr



Table of content

 Introduction
 Basic cryptography knowledge
 Connection & authentication
 Client configuration
 SSH key management
 File applications
 SSH tunneling

02



INTRODUCTION



Secure Shell

 Protocol: secure connection specification (encryption)
 Applications

 Connection to a remote host shell: ssh (replace telnet, FTP, R-command, etc.)
 File management: transfer, delete, move and synchronize files & directories (scp, sftp, rsync).
 Tunneling: make services accessible and secured.

04



BASIC CRYPTOGRAPHY
KNOWLEDGE



Fundamental functions

 Random number generator
Generate number from random sources : mouse gesture, keyboard entry, /dev/[u]random, etc.
 Hash/Digest
Algorithm based on mathematical functions that map arbitrary size data to fixed size set of values.
 Functions are irreversible: it is not possible to compute the original data from the hash values.
 Use cases: password hashing (with salt), file integrity (transfer), electronic signature, etc.
 Algorithms: md5, sha1, sha256, sha512, sha3, etc.
 Command lines: md5sum sha1sum sha256sum sha512sum, etc.
user@host:~$ sha1sum .bashrc8976565afec640267e044381ff87163e79bcb895 .bashrc
 Symmetric, asymmetric, hybrid key cryptography.

06



Symmetric key cryptography

 Principle: encrypt/decrypt data with the same key.
 Synonyms: shared key, secret key, session key, etc.
 Ciphers: DES, 3DES, AES, BLOWFISH, IDEA, etc.
 Advantages: very fast, high entropy, etc.
 Problem: how to securely share the key?

07



Asymmetric key cryptography

 Principle: with a couple of key, when encryption is made by one key, decryption could be only made by the
other key and vice versa.

 Ciphers: RSA (keys <= 2048 bits deprecated), DSA (deprecated), ECDSA, ED25519 (recommended), etc.
 Notion: private and public keys, just a matter of visibility, they are not different! You can encrypt with a private

key and decrypt with a public key (it's the principle of digital signatures using hash functions)
 Advantage: sharing the encryption key is no longer a problem.
 Problem: It's slow, 1000 times slower than symmetric.

08



Hybrid cryptography

 Principle: a symmetric key, called session key, is exchanged using an asymmetric cryptography.
 Data encryption during the transmission is made with the session key.
 Well known applications use hybrid cryptography: SSH, VPN, SSL/TLS (HTTPS, IMAPS, POPS, SMTPS, etc.)

09



CONNECTION & AUTHENTICATION



Establishing a secure connection

SSH Client SSH Server

1. Client ask for server's public key and supported SSH protocol version & symmetric ciphers.

6. Client and Server encrypt/decrypt information using the session key.

2. Client chooses a symmetric cipher and generate a key for it: the session key.

3. Client sends the session key encrypted with the server's public key.

5. Server decrypt the session key with its private key.

4. Client informs the server about the chosen symmetric cipher.

11



Host authenticity checking 1/2

Remote host checking depends on the value of option StrictHostKeyChecking in ~/.ssh/config: no, yes
or ask.
If StrictHostKeyChecking is set to no:~$ ssh user@machineWarning: Permanently added 'machine,10.0.0.1' (RSA) to the list of known hosts.Password:
If StrictHostKeyChecking is set to yes:~$ ssh user@machineNo RSA host key is known for machine and you have requested strict checking.Host key verification failed.
If StrictHostKeyChecking is set to ask:~$ ssh user@machineThe authenticity of host 'machine (10.0.0.1)' can't be established.RSA key fingerprint is 8a:1f:39:4b:a8:d0:13:9a:cf:c3:c2:13:2d:42:9f:b0.Are you sure you want to continue connecting (yes/no)?

12



Host authenticity checking 2/2

When the server's public key has changed, ssh warns you about a possible man in the middle attack:
~$ ssh user@machine@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!Someone could be eavesdropping on you right now (man-in-the-middle attack)!It is also possible that the RSA host key has just been changed.The fingerprint for the RSA key sent by the remote host is55:3b:ab:11:8f:96:80:a6:9c:c5:63:5f:ed:87:bc:94.Please contact your system administrator.Add correct host key in /home/user/.ssh/known_hosts to get rid of this message.Offending key in /home/user/.ssh/known_hosts:1Password authentication is disabled to avoid man-in-the-middle attacks.Keyboard-interactive authentication is disabled to avoid man-in-the-middle attacks.Agent forwarding is disabled to avoid man-in-the-middle attacks.X11 forwarding is disabled to avoid man-in-the-middle attacks.Password:

13



User authentication methods

As a secure connection between client and server is established (first step), access is granted by:
 Password: the client sent his password via secure connection and the server check if password is valid.
 Asymmetric keys, based on challenge-response protocol: If authentication by key is enable, the server create a

challenge encrypted by the registered client public key (like in first step). If client passes the challenge (decrypt
with its private key), the server grant access to the client.

 Host: system using hosts.equiv and known_host defined by admin. As you’re already authenticated on one
host, you can access to the others (used sometime inside HPC clusters).

 Kerberos, smartcard (YubiKey), PAM, certificate, 2 factors (YubiKey), etc.

14



SSH client: ssh 1/2

 Remote host connection
Syntax: ssh [username@]<hostname FQDN>
Example for user user on spirit1:user@port-500:~$ ssh user@ssh-gw.ipsl.fr # or ssh ssh-gw.ipsl.frPassword:user@ssh-gw:~$
 Command line or remote script executed on remote host
Syntax: ssh [username@]<hostname FQDN> "<command line or script absolute path>"
Example of files and directories listing the home directory of user user on spirit1:user@port-500:~$ ssh user@ssh-gw.ipsl.fr "ls -l"Password:total 102276drwx------ 2 user ipsl 44 juin 28 2022 bindrwxr-xr-x 3 user ipsl 27 mars 2 2023 datadrwxr-xr-x 4 user ipsl 243 avril 21 09:45 tmp

15



SSH client: ssh 2/2

 Local script executed on remote host
Syntax: ssh [username@]<hostname FQDN> "bash -s" < /path/to/my/script
Example of files and directories listing the home directory of user user on spirit1:user@port-500:~$ echo "ls" > tmp.sh # tmp.sh only exists on localhost (port-500)!user@port-500:~$ ssh user@ssh-gw.ipsl.fr "bash -s" < tmp.shPassword:bindatatmp
Useful for scripts factorization: one script for multiple hosts!

16



IPSL SSH jump hosts

 IPSL Fédération: ssh-gw.ipsl.fr
 LATMOS: Guyancourt: cartman.latmos.ipsl.fr Jussieu: sirocco.latmos.ipsl.fr
 LISA
 LMD: ssh-in.lmd.jussieu.fr
 LOCEAN: cerbere.locean-ipsl.upmc.fr
 LSCE
 IPSL cluster head nodes: Spirit: spirit1.ipsl.fr & spirit2.ipsl.fr

 SpiritX: spiritx1.ipsl.fr & spiritx2.ipsl.fr
 HAL: hal.ipsl.fr

17



CLIENT CONFIGURATION



Configuration files

User configuration files are located in the ~/.ssh directory (whereas admin files are located in /etc/sshd and
are not intended for users):

 Client configuration files:
 config: a set of instructions that configure the SSH commands (ssh, scp, sftp, etc.)
 known_hosts: a set of server's public keys already checked/approved (seen in host authenticity).
 public and private key files like: id_ed25519 & id_ed25519.pub, id_rsa & id_rsa.pub, etc. (will see their

creation).

 Server configuration file:
 authorized_keys: a set of client's public keys that are authorized for the user authentication (will see in

authentication by key pair).

 config, know_hosts and authorized_keys files are not created by default. You may have to create them.

19



config 1/2

It contains the list of SSH client instructions.

Typical instructions applied for all remote hosts (*):

Host *StrictHostKeyChecking ask # Specifies the host authenticity checking behavior.ServerAliveInterval 90s # Prevents closing an idle connection during 90 seconds.ForwardX11 yes # Enable X-Forwarding, the window system (-X option).ForwardAgent yes # Grant remote hosts to use local keys without deploying them.

20



config 2/2

 Connection configuration
Defining a connection to spirit1 for user user:

Host spirit1HostName spirit1.ipsl.frUser userIdentityFile ~/.ssh/ipsl_id_ed25519
 Jumping connection configuration
Defining a connection to jean-zay through spirit1 for user user:

Host jean-zayHostName jean-zay.idris.frUser uuf18sdIdentityFile ~/.ssh/jz_id_ed25519ProxyCommand ssh spirit1 -W %h:%p
port-500 spirit1 jean-zay1

user@port-500:~$ ssh jean-zayuuf18sd@jean-zay1:~$

user@port-500:~$ ssh spirit1user@spirit1:~$
doc

21

https://documentations.ipsl.fr/spirit/ssh/about_ssh_key.html#ssh-client-configuration


authorized_keys & known_hosts

 Example of authorized_keys content

ssh-ed25519 AAAAC3NzaD1lZDI1NTE6BAAAIBtuYLxUq8waHr0oxM+1/PNu0haBzesl+IdPtrm8hfTuser@organization.com
 Example of known_hosts content

spirit1.ipsl.fr ssh-ed25519AAAAC3NzaC1lZDI1NTE5AAAAIN0EP/A5FTncSzXPy9PyDblFy5KnKjMOyaKMeuLS6hhP

client's public key cipher client's public key

server FQDN server's public key cipher

server's public key

22



SSH KEY MANAGEMENT



Key based authentication

 Strong authentication based on:
 Challenge-response protocol.
 Strong asymmetric ciphers (ECDSA, Ed25519, etc.)

 The private key remains on client-side and never leave it, except for backup (example: on SSH jump hosts).
 The private key is encrypted to prevent any unwanted used. Decrypted private keys can be hang on key rings to
save further asking password.

 The public key is deployed on the server-sides, manually (editing authorized_keys) or automatically (ssh-copy-id).
 Keys can used from and to any machines: SSH is widely supported in Unix world.
 After a bit of work (deploying the public key and hunging decrypted private key on a key ring), you will be able to
connect to a server without asking password, as long as the key ring is running (login session).

24



Key pair generation

 Ed25519 keys generation example

user@port-500:~$ ssh-keygen -t ed25519Generating public/private ed25519 key pair.Enter file in which to save the key (/home/user/.ssh/id_ed25519):Enter passphrase (empty for no passphrase):Enter same passphrase again:Your identification has been saved in /home/user/.ssh/id_ed25519Your public key has been saved in /home/user/.ssh/id_ed25519.pubThe key fingerprint is:SHA256:jbk2NXPeLXCjwijozGtuWVvxAxyymDAR5ik35MAnV1k user@port-500The key's randomart image is:+--[ED25519 256]--+|o =o..oE || Oo+ .. . ||. Xo o + . || o .o . ++ || S+= o o || .. .=o= = o || .o.o= o.o o .|| ++ .o . . . || +*. |+----[SHA256]-----+

doc

 Key file permissionsuser@port-500:~$ $ ls -l ~/.sshtotal 16-rw-------@ 1 user root 411 11 sep 14:43 id_ed25519-rw-r--r--@ 1 user root 102 11 sep 14:43 id_ed25519.pub
 .ssh and home permissions: never chmod 777!

25

https://documentations.ipsl.fr/spirit/ssh/about_ssh_key.html#generating-your-keys-on-linux-or-macos


Private key password

 The private key is encrypted (symmetric cipher), therefore the associated password:
 Must be at least 14 characters long. Keepass and passphrase should be considered.
 Must never be trivial (single word in any existing language).
 Must never be your email, user account or your login session password.
 Should include special characters (#, }, $, *, §, etc.) But mind your keyboard layout!

 Keepass password manager:
 Is an encrypted data bases of logins, passwords, URL and notes. Easily copy & past your login names and

passwords.
 Is granted by ANSSI.
 Can generate:

 Passwords with as many characters as you like.
 Passphrases with as many words as you like.

 Display password and passphrases entropy.

26



Public key deployment: manual

Copy the public key and paste it into the remote authorized_keys file.

 On client-side

user@port-500:~$ scp ~/.ssh/id_ed25519.pub user@ssh-gw.ipsl.fr:./.ssh
Or read the content of the public key file and copy its contents (vi, less, more, cat, etc.)
 On server-side

user@ssh-gw:~$ cat ~/.ssh/id_ed25519.pub >> ~/.ssh/authorized_keysuser@ssh-gw:~$ chmod 600 ~/.ssh/authorized_keys
Or edit the authorized_keys file and paste the public key (vi, nano, etc.)
The data center of the IPSL doesn't authorize the modification of the authorized_keys file content on its clusters
(Spirit, SpiritX and HAL). You may contact meso-support@ipsl.fr for any key access modifications. 27



Public key deployment: automatic
(recommended)

 On client-side

Syntax: ssh-copy-id -i <path to the public key> [username@]<hostname FQDN>
Example:

user@port-500:~$ ssh-copy-id -i ~/.ssh/id_ed25519.pub user@ssh-gw.ipsl.fr/usr/bin/ssh-copy-id: INFO: Source of key(s) to be installed: ".ssh/id_ed25519.pub"/usr/bin/ssh-copy-id: INFO: attempting to log in with the new key(s), to filter out any thatare already installed(user@ssh-gw.ipsl.fr) Password:
Number of key(s) added: 1
Now try logging into the machine, with: "ssh 'user@ssh-gw.ipsl.fr'"and check to make sure that only the key(s) you wanted were added.

28



Key backup

 Backup your SSH keys:
 Prevent loosing your access from hardware failures or human errors.
 Carefully copy your SSH keys, especially the private key: never decrypted!
 We recommend to copy your SSH keys on the SSH jump host of your lab. Jump hosts are still accessible
with password (not the clusters of IPSL).

 Do not change the permissions of the private key, keep it not readable for group and other (chmod 600).
Whereas the public key has to be readable for all users (chmod 644).

doc

29

https://documentations.ipsl.fr/spirit/ssh/about_ssh_key.html#keys-replication


Key rings

 Principle
 You decrypt the private keys once per login session, then use them as many times as you like without
having to decrypt them each time they are used.

 Decrypted private keys are flushed from key rings when user logs off. Private keys stay decrypted as long
as login session lives.

 Shell key ring: ssh-agent (available on all OS).
 Graphical user interface key rings:

 MacOSX: Keychain.
 Linux & Windows Subsystem for Linux: Gnome keyring, KDE wallet, etc.
 Windows: Mobaxterm (much more than a key ring!), etc.

30



ssh-agent
(recommended on Linux)

ssh-agent is a shell key ring. First you have to activate it (if not), only once per login session, then you can add
decrypted private keys as many as you want with ssh-add.
 Activate ssh-agent only once per login session (should be added in ~/.bashrc)

user@port-500:~$ eval $(ssh-agent)Agent pid 2317917
 Decrypt a private key and hang it up on ssh-agent
Syntax: ssh-add <path to the private key>
Example:user@port-500:~$ ssh-add ~/.ssh/id_25519Enter passphrase for /home/user/.ssh/id_ed25519:Identity added: /home/user/.ssh/id_ed25519 (user@ipsl.fr)

31



Gnome keyring/Seahorse

Gnome keyring is the default key ring system on Gnome desktop. Seahorse is one of its graphical user interface
and makes it easier to use. As for ssh-agent, the decrypted keys can last as long as the user session is running.

32



MacOSX Keychain

Keychain is the native key ring on MacOSX. It doesn't accept decrypted private keys, but it can store their
password.

 Decrypt a private key, hang it up on ssh-agent and store the password of the key on Keychain
Syntax: ssh-add --apple-use-keychain <path to the private key>
Example:user@port-500:~$ ssh-add --apple-use-keychain ~/.ssh/id_ed25519Enter passphrase for .ssh/id_ed25519:Identity added: .ssh/id_ed25519 (user@ipsl.fr)

33



FILE APPLICATIONS



Secure Copy Protocol

 Schemescp [-r] sources target-r stands for recursive: it enables copy of directories and its contents (files and subdirectories).
 Send local files to remote host
Syntax:scp <path to the file> [path to the file] [username@]<hostname FQDN>:<destination path>
Example of copying the local command more into the home directory on spirit1:user@port-500:~$ scp /usr/bin/more user@spirit1.ipsl.fr:/home/user # Absolute path.user@port-500:~$ scp /usr/bin/more user@spirit1.ipsl.fr:. # Relative path.
 Send remote files to local host
Syntax:scp [username@]<hostname FQDN>:<path to the file> <local parent directory path>
Example of copying the command less on spirit1 into the local home directory:user@port-500:~$ scp user@spirit1.ipsl.fr:/usr/bin/less ~/
 Working with configured connection (~/.ssh/config)user@port-500:~$ scp -c aes128-ctr -r /some/data jean-zay:/gpfsscratch/rech/epp/xxx31d 35



SSH File Transfer Program 1/4

 Connection to the SFTP commands interpreter
Syntax: sftp [-r] [username@]<hostname FQDN>[:remote working directory path]-r stands for recursive: it enables copy entire directories when uploading and downloading.
 Download commands: download remote files into the local working directoryget [-R] <path on remote host to the file> # to start downloading a file or directory (-R)reget [-R] <path on remote host to the same file> # to resume an interrupted download.
 Upload commands: upload local files into the remote working directoryput [-R] <path on local host to the file> # to start uploading a file or directory (-R)reput [-R] <path on local host to the same file> # to resume an interrupted upload.put et reput don't create remote directory: you must create it before uploading data (mkdir)!
 Quit SFTP interpreter: quit or exit or keyboard shortcut: CTRL + d (like any shell)
 Other commands: rm, copy, etc. (ssh is recommended when working with directories.)
 Navigating in local and remote file system: Remote: cd, ls, pwd, mkdir, etc.

 Local: lcd, lls, lpwd, lmkdir, etc. 36



SSH File Transfer Program 2/4

 Example: egress data on Jean-Zay with configured connection (~/.ssh/config). spirit1 is the registered machine
to access Jean Zay.

user@port-500:~$ ssh spirit1user@spirit1:~$ sftp -r jean-zay:/gpfsscratch/rech/epp/xxx31dConnected to jean-zay.Changing to: /gpfsscratch/rech/epp/xxx31dsftp> mkdir some_data # Fix error: "Couldn't canonicalize: No such file or directory"sftp> put -R /scratchu/user/some_data # -R is overkill with -rUploading /scratchu/user/some_data/ to /gpfsssd/scratch/rech/epp/xxx31d/some_dataEntering /scratchu/user/some_data/Entering /scratchu/user/some_data/subdir/scratchu/user/some_data/subdir/file1 100% 708KB 5.4MB/s 00:00sftp> quituser@spirit1:~$

37



SSH File Transfer Program 3/4

 Filezilla: free SFTP GUI
1. Set up a connection with site manager (file menu)

38



SSH File Transfer Program 4/4

Local file system view Remote file system view

39

2. Then drag and drop files and directories from a view to another.



Rsync over SSH

 Rsync over ssh schemersync <rsync options> <source_expression> <destination expression>
 Synchronizing a local directory on remote hostrsync --archive --hard-links --delete --human-readable --verbose --progress/some/where/on/local_host/some_data/[username@]<hostname FQDN>:/some/where/on/remote_host/some_data
Is equivalent to:

rsync --archive --hard-links --delete --human-readable --verbose --progress/some/where/on/local_host/some_data [username@]<hostname FQDN>:/some/where/on/remote_host
 Example with configured connection (~/.ssh/config):user@port-500:~$ rsync -a -H --delete -h -v --progress ~/some_data/ spirit1:/scratchu/user/some_data
 Synchronizing a remote directory on local host: just invert source and destination!

40



Gitlab over SSH 1/2
Public key registration

1. Open your user
settings menu

3. Paste here your public SSH key

4. Give a title and
press on "Add key"
button

2. Select "SSH
Keys" item

The public key
is added once and for all

41



Gitlab over SSH 2/2
Cloning example

3. Finally, open a shell and clone the repository

user@port-500:~$ git clone git@gitlab.in2p3.fr:ipsl/espri/espri-ia/projects/nxtensor.git
git pull and git push will use the registered public key for authentication challenge: no more password
asked during the login session if your private key is hung decrypted on a key ring. Github also supports the same
feature.

1. On the repository page, click on the "Clone" button

2. Copy the URL prefixed by git

42



SSH TUNNELING



Use cases

 Principle: encapsulate network communication in an SSH connection.
 Use cases:

 Securing a connection (transport layer) but not the authentication. Example: VNC (remote desktop).
 Access to services in restricted networks. Example: Web interfaces like JupyterLab, Tensorboard, Dask
dashboard, etc. when running on IPSL clusters.

44



TCP & UDP ports

 Principle
Each network connection have two end points. A port refers to a TCP or UDP connection end point and is
identified by a unique number (unsigned 16 bits integer). When two processes establish a connection, each
process open its own port.
 Reserved port numbers: Only root can open port numbers <= 1024. Some port numbers are dedicated to specific protocols (80 HTTP, 443 HTTPS, 21 FTP, 22 SSH, etc.). Services that implement these protocols, are expected to open the associated port numbers (on their side).
 Router and firewall can filter connections based on the port number, mac address (NIC id), etc. <=> Access to
services is regulated according to a security policy. Usually, by default, nothing is permitted: intranet machines
are not accessible from Internet, whatever the port.

 Example of a web browser opening a page:
1024 < port randomly chosen < 65535 ports 80 (http) and 443 (https)

web browser web serverTCP/IP connection 45



Accessibility 1/2

SSH port

DMZ zoneInternet zone

jump host

Intranet zone

SSH port (22)

Direct SSH connection from Internet
is not permitted

firewall
SSH gateway

Connection to Internet may or may not be
permitted

46



Accessibility 2/2

other ports

Internet zone

jump host

Intranet zone

other ports

Connections on other ports is permitted
between machines in intranet

other ports

firewall

DMZ zone

Direct connection from Internet
is still not permitted

Connection to Internet may or may not be
permitted

47



Local port forwarding

Internet zone

jump host

Intranet zone

local port

encapsulated in SSH connection

firewall

DMZ zone

forwarded port

local host
intranet host

 Principle Relay a port on an Internet host to an intranet host, through a jump host. Any service that opens the forwarded local port on intranet host, is accessible on the Internet host. In other
words, Internet host is able to access to services that run on intranet host.

 Syntax
ssh -N -L <local port>:<intranet host FQDN>:<forwarded port> [username@]<jump host FQDN>

48



IPSL rooms reservation without VPN

IPSL room reservation page (https://resa.ipsl.fr) is
only accessible within the IPSL networks, not from Internet.
Machines outside of IPSL networks can access to this page though
IPSL VPN or by a SSH local port forwarding:
 From localhost in Internet:
user@port-500:~$ ssh -N -L 8000:resa.ipsl.fr:443 user@ssh-gw.ipsl.fr
 Then in a local web browser, open https://localhost:8000 and accept SSL exception.
 The config file can be configured like this:
Host resaHostName ssh-gw.ipsl.frUser userIdentityFile ~/.ssh/ipsl_id_ed25519LocalForward 8000 resa.ipsl.fr:443 # There is not ":" after "8000" and before "resa"RequestTTY no # Prevent login into ssh-gw.ipsl.fr
So as to replace the previous command line by: ssh resa 49



JupyterLab as cluster job 1/2

 Start JupyterLab instance on spirit cluster interactive job with configured connection (~/.ssh/config)
user@port-500:~$ ssh spirit1user@spirit1:~$ srun --pty --time 2:00:00 bash # Can specify memory and cpu cores here.user@spirit64-01:~$ module load pangeo-meso/2023.04.15 # Load any module where jupyter isprovided!(pangeo-meso-2023.04.15) user@spirit64-01:~$ jupyter lab --no-browser --ip=0.0.0.0--port=8888 # <number between 10000 and 15000>...[I 2023-11-03 10:35:25.955 ServerApp]http://127.0.0.1:8888/lab?token=cf4455a95cb689e69717515b38b6b554b51cbd80a7f66ec2[I 2023-11-03 10:35:25.955 ServerApp] Use Control-C to stop this server and shut down allkernels (twice to skip confirmation).[C 2023-11-03 10:35:25.959 ServerApp]

To access the server, open this file in a browser:file:///home/user/.local/share/jupyter/runtime/jpserver-257415-open.htmlOr copy and paste one of these URLs:http://spirit64-01:8888/lab?token=cf4455a95cb689e69717515b38b6b554b51cbd80a7f66ec2http://127.0.0.1:8888/lab?token=cf4455a95cb689e69717515b38b6b554b51cbd80a7f66ec2

doc

50

https://documentations.ipsl.fr/spirit/common/jupyter_as_job.html


JupyterLab as cluster job 2/2

 Setup SSH local port forwarding with configured connection (~/.ssh/config)
In another local shell (not on spirit cluster!):
ssh -N -L 8888:spirit64-01:8888 spirit1 # This command line does not return anything (-L)!
 Display JupyterLab
Just copy/past the previous URL containing 127.0.0.1 (localhost) into a local Web browser.
 At the end
1. Shutdown Jupyterlab (file menu then shutdown).
2. Issue CTRL + c shortcut in the shell where ssh local port forwarding was executed.
3. Exit interactive job.

doc

51

https://documentations.ipsl.fr/spirit/common/jupyter_as_job.html


JupyterHub at Jean-Zay

Accessing to JupyterHub via SOCKS proxy: doc

HTTPS over SSHHTTPS over SSH registered host at IDRIS Jean Zay node

52

https://documentations.ipsl.fr/spirit/hal_gpu_cluster/access_gpu_jean_zay.html#32-when-having-no-access-to-a-web-browser-on-the-registered-machine


Remote port forwarding

Internet zone

jump host

Intranet zone

forwarded port

stream encapsulated in SSH connection

firewall

DMZ zone

remote port

local host
intranet host

 Principle Relay a port on an intranet host to an Internet host, through a jump host. Any service that opens the forwarded remote port on Internet host, is accessible on the intranet host. In other
words, intranet host is able to access to services that run on Internet host. Use cases are fairly rare.

 Syntax
ssh -N -R <remote port>:<intranet host FQDN>:<forwarded port> [username@]<jump host FQDN>

53



MERCI - THANK YOU

Institut Pierre Simon Laplace IPSL


